Coaxial Cable Delay Measurements

Using the HP 8753D VNA

Jacques Audet VE2AZX ve2azx@amsat.org

RG8 CABLE MINIFOAM approx 15 ft.

Conclusions and Observations

- In general the measured delays decrease until about 300 MHz, where delays will stabilize. A couple of cables showed a delay increase after this plateau.
- For the "standard" coaxial cables measured, the total delay variations from 1 to 1000 MHz were about 1 to 2 % of the total delay.
- Very good cables will exhibit 0.5 % delay variations. These cables will support the fastest data speeds.
- Conceivably the delay variations should be limited to approx. 20 % of the bit duration, over the frequency range of the data pulses.
- Minifoam RG-8 cable (sample #2) gave much worse results, with 6.4 % delay variations. It also showed a 6 dB dip in S21 at 1 GHz.
 The S11 was OK however.
 - The RG213 sample also exhibited the same effect, with S21 dipping slightly (0.25 dB) at 430 MHz and giving a dip in the delay as well.