c = speed of light in meters/Sec or feet/Sec
$\lambda=$ wavelength in meters or feet, $f=$ frequency in Hz
$\mathrm{Vf}=$ velocity factor (speed in cable / speed of light)
len $=$ length of TRL in meters or feet
$\mathrm{c}=2.99792 \cdot 10^{8} \quad \frac{\mathrm{~m}}{\mathrm{sec}} \quad \mathrm{c}=9.83571 \cdot 10^{8} \frac{\text { feet }}{\mathrm{sec}}$
This value will be used for all succeding calculations.
$c \mathrm{c}:=9.83571 \cdot 10^{8} \quad \frac{\text { feet }}{\mathrm{sec}}$
$\lambda \cdot f=c \cdot V f \quad$ Basic equation
When measuring Vf, we use a half wavelenght line or quarter wavelenght line

$$
\begin{array}{ll}
\text { Vf }=\frac{\lambda \cdot \text { len } \cdot \mathrm{f}}{\mathrm{c}} & \begin{array}{l}
\lambda=1 \text { for } 360 \text { deg resonance (one wavelenght line) } \\
\lambda=2 \text { for } 180 \text { deg resonance (half wavelenght line) } \\
\lambda=4 \text { for } 90 \text { deg resonance (quarter wavelenght line) }
\end{array}
\end{array}
$$

For a resonance in the half wavelenght mode, we find the value 'len' at freq. ' f ' in MHz

$$
\begin{array}{lll}
\text { len }:=22.167 & \lambda:=2 & \mathrm{f}:=19.89 \mathrm{MHz} \\
\text { Vf }:=\frac{\lambda \cdot \text { len } \cdot \mathrm{f} \cdot 10^{6}}{\mathrm{c}} & \text { Eq. (1) } &
\end{array}
$$

For a resonance in the quarter wavelenght mode, we find the value 'len' at freq. ' f '
len: $=22.167$
$\lambda:=4$
$\underset{m}{f}:=9.9$
$V \mathrm{Vf}:=\frac{\lambda \cdot \text { len } \cdot f \cdot 10^{6}}{\mathrm{c}}$
$\mathrm{Vf}=0.892$

Calculate the quarter wave resonant frequency: $\mathfrak{f 4}$ in MHz
$\lambda=4$ for quarter wave

$$
\mathrm{Vf}_{\mathrm{Ni}}:=\frac{\lambda \cdot \operatorname{len} \cdot \mathrm{f} \cdot 10^{6}}{\mathrm{c}} \quad \mathrm{Vf}=\frac{4 \cdot \operatorname{len} \cdot \mathrm{f} 4 \cdot 10^{6}}{\mathrm{c}}
$$

Solving for f 4 in Eq. (1), the quarter wave frequency in MHz :

$$
\mathrm{f} 4:=\frac{\mathrm{Vf} \cdot \mathrm{c}}{4 \cdot 10^{6} \cdot \text { len }}
$$

With c in feet/sec and len in feet
c: $:=9.836 \cdot 10^{8} \frac{\text { feet }}{\text { sec }} \quad$ Vf $:=0.66 \quad$ len $:=10 \quad$ Feet
f4: $=\frac{\mathrm{Vf} \cdot \mathrm{c}}{4 \cdot 10^{6} \cdot \text { len }}=16.229 \quad \mathrm{MHz} \quad \begin{aligned} & \text { Note } \mathrm{Vf}=0.66 \text { for coaxial cables with } \\ & \text { polyetylene insulation. }\end{aligned}$

Calculate the lenght in feet for quarter wave resonance

Solving for len in Eq. (1), the length (len) is in feet and (c) is in feet/sec:
len : $=\frac{\mathrm{Vf} \cdot \mathrm{c}}{4 \cdot 10^{6} \cdot \mathrm{f4}}=10 \quad$ feet $\quad \begin{aligned} & \mathrm{f} 4 \text { is the resonant frequency. } \\ & \\ & \text { Where } \mathrm{c}=\text { speed of light in feet/sec. }\end{aligned}$

Simulation

The transmission line under test (TL2) is connected in shunt

Source

With $\quad \mathrm{Vf}=0.66$
The simulation uses K the dielectric constant, instead of Vf

$$
K=\frac{1}{V f^{2}} \quad \underset{w}{K}:=\frac{1}{V f^{2}}=2.296
$$

$A=$ attenuation in $d B / m$ at freq. $F(M H z)$

This end open for quarter wave resonance
This end shorted for half \& full wave resonance

The first frequency of minimum response gives the resonnant frequency $f 4$. As calculated previously len=10 feet

